Advertisements
Advertisements
प्रश्न
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
उत्तर
Let I = `int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Put log x = t
∴ `1/x "d"x = dt`
∴ I = `int (2"t" + 3)/((3"t" + 2)("t"^2 + 1)) "dt"`
Let `(2 + 3)/((3"t" + 2)("t"^2 + 1)) = "A"/(3"t" + 2) + ("Bt" + "C")/("t"^2 + 1)`
∴ 2t + 3 = A(t2 + 1) + (Bt + C)(3t + 2) .........(i)
Putting t = `-2/3` in (i), we get
`2((-2)/3) + 3 = "A"[((-2)/3)^2 + 1]`
∴ `(-4)/3 + 3 = "A"(4/9 + 1)`
∴ `5/3 = "A"(13/9)`
∴ A = `15/13`
Putting t = 0 in (i), we get
3 = A(1) + C(2)
∴ 3 = `15/13 + 2"C"`
∴ `3 - 15/13` = 2C
∴ `24/13` = 2C
∴ C = `12/13`
Putting t = 1 in (i), we get
2 + 3 = A(1 + 1) + (B + C)(3 + 2)
∴ 5 = 2A + 5(B + C)
∴ 5 = `2(15/13) + 5("B" + 12/13)`
∴ 5 = `30/13 + 5"B" + 60/13`
∴ 5B = `5 - 30/13 - 60/13`
∴ 5B = `-25/13`
∴ B = `(-5)/13`
∴ `(2"t" + 3)/((3"t" + 2)("t"^2 + 1)) = (15/13)/(3"t" + 2) + (-5/13 "t" + 12/13)/("t"^2 + 1)`
∴ I = `int((15/13)/(3"t" + 2) + ((-5)/13 "t" + 12/13)/("t"^2 + 1)) "dt"`
= `15/13 int 1/(3"t" + 2) "dt" - 5/13 int "t"/("t"^2 + 1) "dt" + 12/13 int 1/("t"^2 + 1) "dt"`
= `15/13 int 1/(3"t" + 2) "dt" - 5/13*1/2 int (2"t")/("t"^2 + 1) "dt" + 12/13 int 1/("t"^2 + 1) "dt"`
= `15/13* (log|3"t" + 2|)/3 - 5/26 log|"t"^2 + 1| + 12/13 tan^-1 "t" + "c"`
∴ I = `5/13 log |3 log x 2| - 5/26 log |(logx)^2 + 1| + 12/13 tan^-1(logx) + "c"`
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
Integrate the rational function:
`1/(x(x^4 - 1))`
`int (xdx)/((x - 1)(x - 2))` equals:
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(1)/(sinx*(3 + 2cosx)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`
Integrate the following with respect to the respective variable : `cot^-1 ((1 + sinx)/cosx)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
State whether the following statement is True or False.
If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^2sqrt("a"^2 - x^6) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (sinx)/(sin3x) "d"x`
`int sec^3x "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
`int x sin2x cos5x "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int 1/(sinx(3 + 2cosx)) "d"x`
`int xcos^3x "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
Evaluate `int x log x "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Evaluate: `int (dx)/(2 + cos x - sin x)`
Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Evaluate.
`int (5x^2 - 6x + 3) / (2x -3) dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3)dx`