हिंदी

∫dxx(x2+1) equals: - Mathematics

Advertisements
Advertisements

प्रश्न

`int (dx)/(x(x^2 + 1))` equals:

विकल्प

  • `log |x| - 1/2 log |x^2 + 1| + C`

  • `log |x| + 1/2 log |x^2 + 1| + C`

  • `- log |x| + 1/2 log |x^2 + 1| + C`

  • `1/2 log |x| + log (x^2 + 1) + C`

MCQ

उत्तर

`log |x| - 1/2 log |x^2 + 1| + C`

Explanation:

Let `I = int dx/(x (x^2 + 1))`

`= int x/(x (x^2 + 1))  dx`

Put x2 = t

2x dx = dt

`I = 1/2 int (2x  dx)/(x (x^2 + 1))`

`= 1/2 int dt/(t (t + 1))`

Now, `1/(t (t + 1)) = A/t + B/(t + 1)`

1 = A(t + 1) + Bt

Putting t = 0, 1 = A

∴ A = 1

Putting t = -1, 1 = B(-1)

∴ B = -1

`therefore 1/(t (t + 1)) = 1/t - 1/(t + 1)`

`therefore 1/2 int 1/(t (t + 1))  dt = 1/2 int 1/t dt - 1/2 int 1/(t + 1)  dt`

`= 1/2  log abs t - 1/2  log abs (t + 1) + C`

`= 1/2  log abs (x ^2) - 1/2  log abs(x ^2 + 1) + C`

`= log abs x - 1/2  log abs(x^2 + 1) + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.5 [पृष्ठ ३२३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.5 | Q 23 | पृष्ठ ३२३

संबंधित प्रश्न

Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`1/(x(x^4 - 1))`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`


Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int "dx"/(("x" - 8)("x" + 7))`=


Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int 1/(4x^2 - 20x + 17)  "d"x`


`int (sinx)/(sin3x)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Evaluate `int (2"e"^x + 5)/(2"e"^x + 1)  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Evaluate:

`int (x + 7)/(x^2 + 4x + 7)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×