Advertisements
Advertisements
प्रश्न
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
उत्तर
Let I = `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`= int ("3x" - 1)/(("x - 1")("2x + 1"))` dx
Let `(3"x" - 1)/(("x - 1")("2x" + 1)) = "A"/"x - 1" + "B"/"2x + 1"`
∴ 3x - 1 = A(2x + 1) + B(x - 1) ...(i)
Putting x = 1 in (i), we get
3(1) - 1 = A(2 + 1) + B(0)
∴ 2 = 3A
∴ A = `2/3`
Putting x = `- 1/2` in (i), we get
`3(- 1/2) - 1 = "A"(0) + "B"[- 1/2 - 1]`
∴ `- 5/2 = "B" (- 3/2)`
∴ B = `5/3`
∴ `(3"x" - 1)/(("x" - 1)("2x" + 1)) = (2/3)/("x - 1") + (5/3)/("2x + 1")`
∴ I = `int ((2/3)/("x - 1") + (5/3)/("2x" + 1))` dx
`= 2/3 int 1/("x - 1") "dx" + 5/3 int 1/("2x + 1")`dx
∴ I = `2/3 log |"x - 1"| + 5/3 (log |("2x" + 1)|)/2` + c
APPEARS IN
संबंधित प्रश्न
Find : `int x^2/(x^4+x^2-2) dx`
Evaluate:
`int x^2/(x^4+x^2-2)dx`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
`int 1/(4x^2 - 20x + 17) "d"x`
`int 1/(2 + cosx - sinx) "d"x`
Evaluate `int x^2"e"^(4x) "d"x`
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.