Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
उत्तर
Let I = `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Resolving into partial fraction, we put
`(2x - 1)/((x - 1)(x + 2)(x - 3)) = "A"/(x - 1) + "B"/(x + 2) + "C"/(x - 3)`
⇒ 2x – 1 = A(x + 2)(x – 3) + B(x – 1)(x – 3) + C(x – 1)(x + 2)
Put x = 1
1 = A(3)(– 2)
⇒ A = `-1/6`
Put x = – 2
– 5 = B(– 3)(– 5)
⇒ B = `- 1/3`
Put x = 3
5 = C(2)(5)
⇒ C = `1/2`
∴ `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x = - 1/6 int 1/(x - 1) "d"x - 1/3 int 1/(x + 2) "d"x + 1/2 int 1/(x - 3) "d"x`
= `- 1/6 log |x - 1| - 1/3 log|x + 2| + 1/2 log|x - 3| + "C"`
= `- log|x - 1|^(1/6) - log(x + 2)^(1/3) + log(x - 3)^(1/3) + "C"`
Hence, `int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x = log[sqrt(x - 3)/((x - 1)^(1/6) (x + 2)^(1/3))] + "C"`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`1/(x^4 - 1)`
`int (xdx)/((x - 1)(x - 2))` equals:
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x:
`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Choose the correct options from the given alternatives :
If `int tan^3x*sec^3x*dx = (1/m)sec^mx - (1/n)sec^n x + c, "then" (m, n)` =
Evaluate: `int (2"x" + 1)/("x"("x - 1")("x - 4"))` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int (2x - 7)/sqrt(4x- 1) dx`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int x^7/(1 + x^4)^2 "d"x`
`int (x^2 + x -1)/(x^2 + x - 6) "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.