Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
उत्तर
Let `x/((x - 1)^2(x + 2))`
`= A/((x - 1)) = B/((x - 1)^2) + C/((x + 2))`
⇒ x = A(x - 1)(x + 2) + B(x + 2) + C(x - 1)2 ...(1)
Put x = 1
1 = 3B
⇒ B = `1/3`
Put x = -2
-2 = C (-2 - 1)2
⇒ C = `(-2)/9`
On comparing the coefficients of x2
A = `-C = 2/9`
Hence, `int x/((x+ 1)^2(x - 2))` dx
`= int 2/ (9 (x - 1)) dx + int 1/ (3 (x - 1)^2) dx - int 2/ (9(x + 2)) dx`
`= 2/9 log abs (x - 1) + 1/3 int (x - 1)^-1/-1 - 2/9 log abs (x + 2) + C`
`= 2/9 log abs ((x - 1)/(x + 2)) - 1/(3(x + 1)) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`(3x -1)/(x + 2)^2`
Integrate the rational function:
`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]
Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`
Integrate the following w.r.t. x : `(2x)/(4 - 3x - x^2)`
Integrate the following w.r.t. x : `(x^2 + x - 1)/(x^2 + x - 6)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
`int "dx"/(("x" - 8)("x" + 7))`=
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int ((x^2 + 2))/(x^2 + 1) "a"^(x + tan^(-1_x)) "d"x`
`int sqrt((9 + x)/(9 - x)) "d"x`
`int sec^3x "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^3tan^(-1)x "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int xcos^3x "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
Choose the correct alternative:
`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?
If f'(x) = `1/x + x` and f(1) = `5/2`, then f(x) = log x + `x^2/2` + ______ + c
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate: `int (dx)/(2 + cos x - sin x)`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`