मराठी

Integrate the rational function: 1-x2x(1-2x) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`(1 - x^2)/(x(1-2x))`

बेरीज

उत्तर

Since `(1-x^2)/(x (1 - 2x)) = (1 - x^2)/(x - 2x^2)` is an improper fraction, therefore we convert it into a peoper fraction by long division method, we get

`(x^2 - 1)/(2x^2 - x) = 1/2 + (x/2 - 1)/(2x^2 - x)`

`= int (-1 + x^2)/(-x + 2x^2) dx`

`= 1/2 int dx 1/2 int (x-2)/(2x^2 - x) dx`

Now, `(x - 2)/(2x^2 - x) = (x - 2)/(x (2x - 1))`

`= A/x + B/(2x - 1)`

⇒ x - 2 = A (2x - 1) + Bx                     ......(i)

Putting x = 0 in (i), we get

-2 = A (-1)

⇒ A = 2

Putting `x = 1/2` in (i), we get

`1/2 -2= B (1/2)`

⇒ 1 - 4 = B

⇒ B = -3

∴ `(x - 2)/ (2x^2 - x) = 2/x - 3/ (2x - 1) = 2/x + 3/ (1 - 2x)`

We have,

`int (1 - x^2)/(x (1 - 2x)) dx`

`= 1/2 int 1 dx + 1/2 int (2/x + 3 /(1 - 2x)) dx`

`= 1/2x + log |x| -3/4 log |1 - 2x| + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.5 [पृष्ठ ३२२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.5 | Q 6 | पृष्ठ ३२२

संबंधित प्रश्‍न

Evaluate:

`int x^2/(x^4+x^2-2)dx`


Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`x/((x-1)(x- 2)(x - 3))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`1/(e^x -1)`[Hint: Put ex = t]


`int (xdx)/((x - 1)(x - 2))` equals:


`int (dx)/(x(x^2 + 1))` equals:


Integrate the following w.r.t. x : `(x^2 + 2)/((x - 1)(x + 2)(x + 3)`


Integrate the following w.r.t. x:

`(6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(1)/(x(x^5 + 1)`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`


Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`


Integrate the following w.r.t.x : `sqrt(tanx)/(sinx*cosx)`


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


`int "dx"/(("x" - 8)("x" + 7))`=


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


`int x^2sqrt("a"^2 - x^6)  "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


`int x sin2x cos5x  "d"x`


`int (x + sinx)/(1 - cosx)  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


`int 1/(4x^2 - 20x + 17)  "d"x`


If `intsqrt((x - 7)/(x - 9)) dx = Asqrt(x^2 - 16x + 63) + log|x - 8 + sqrt(x^2 - 16x + 63)| + c`, then A = ______


The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.


Find: `int x^2/((x^2 + 1)(3x^2 + 4))dx`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate:

`int x/((x + 2)(x - 1)^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×