Advertisements
Advertisements
प्रश्न
A matrix which is both symmetric and skew symmetric matrix is a ______.
पर्याय
triangular matrix
identity matrix
diagonal matrix
null matrix
उत्तर
A matrix which is both symmetric and skew symmetric matrix is a null matrix.
Explanation:
A matrix that is both symmetric and skew-symmetric must satisfy the properties of both types:
- Symmetric Matrix: A matrix A is symmetric if A = AT, meaning it is equal to its transpose.
- Skew-Symmetric Matrix: A matrix A is skew-symmetric if A = – AT, meaning it is equal to the negative of its transpose.
For a matrix to be both symmetric and skew-symmetric, we have:
A = AT and A = – AT
Combining these, we get:
A = – A
This implies that each element of the matrix must be zero:
Aij = – Aij
2Aij = 0
Aij = 0
Therefore, the only matrix that satisfies both conditions is the null matrix (a matrix where all elements are zero).
APPEARS IN
संबंधित प्रश्न
if `A = [(0, -tan alpha/2), (tan alpha/2, 0)]` and I is the identity matrix of order 2, show that I + A = `(I -A)[(cos alpha, -sin alpha),(sin alpha, cos alpha)]`
If A = `[(alpha, beta),(gamma, -alpha)]` is such that A2 = I then ______.
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Given `A = [(2,-3),(-4,7)]` compute `A^(-1)` and show that `2A^(-1) = 9I - A`
Investigate for what values of λ and μ the equations
2x + 3y + 5z = 9
7x + 3y - 2z = 8
2x + 3y + λz = μ have
A. No solutions
B. Unique solutions
C. An infinite number of solutions.
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(6, 0),(0, 6)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(2, 0, 0),(3, -1, 0),(-7, 3, 1)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(10, -15, 27),(-15, 0, sqrt(34)),(27, sqrt(34), 5/3)]`
Classify the following matrix as, a row, a column, a square, a diagonal, a scalar, a unit, an upper triangular, a lower triangular, a symmetric or a skew-symmetric matrix:
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
Find k if the following matrix is singular:
`[(7, 3),(-2, "k")]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
State whether the following statement is True or False:
If A and B are two square matrices such that AB = BA, then (A – B)2 = A2 – 2AB + B2
If A = `[(2, 0, 0),(0, 1, 0),(0, 0, 1)]`, then |adj (A)| = ______
For the non singular matrix A, (A′)–1 = (A–1)′.
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
Show by an example that for A ≠ O, B ≠ O, AB = O
If the matrix A `= [(5,2,"x"),("y",2,-3),(4, "t",-7)]` is a symmetric matrix, then find the value of x, y and t respectively.
The matrix `[(0,-5,8),(5,0,12),(-8,-12,0)]` is a ____________.
If `[(1,2),(3,4)],` then A2 - 5A is equal to ____________.
A = `[a_(ij)]_(m xx n)` is a square matrix, if
If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.
If `A = [(1,-1,2),(0,-1,3)], B = [(-2,1),(3,-1),(0,2)],` then AB is a singular matrix.