Advertisements
Advertisements
प्रश्न
If A = `[(3, -4),(1, 1),(2, 0)]` and B = `[(2, 1, 2),(1, 2, 4)]`, then verify (BA)2 ≠ B2A2
उत्तर
Here, B = `[(2, 1, 2),(1, 2, 4)]_(2 xx 3)` and A = `[(3, -4),(1, 1),(2, 0)]_(3 xx 2)`
∴ BA = `[(6 + 1 + 4, -8 + 1 + 0),(3 + 2 + 8, -4 + 2 + 0)]_(2 xx 2)`
⇒ BA = `[(11, -7),(13, -2)]`
L.H.S. (BA)2 = (BA) · (BA)
= `[(11, -7),(13, -2)][(11, -7),(13, -2)]`
⇒ `[(121 - 91, -77 + 14),(143 - 26, -91 + 4)]`
⇒ `[(30, -63),(117, -87)]`
R.H.S B2 = B · B
= `[(2, 1, 2),(1, 2, 4)]_(2 xx 3) * [(2, 1, 2),(1, 2, 4)]_(2 xx 3)`
Here, number of columns of first
i.e., 3 is not equal to the number of rows of second matrix i.e., 2.
So, B2 is not possible.
Similarly, A2 is also not possible.
Hence, (BA)2 · B2A2
APPEARS IN
संबंधित प्रश्न
Find the value of x, y, and z from the following equation:
`[(x+y+z), (x+z), (y+z)] = [(9),(5),(7)]`
`A = [a_(ij)]_(mxxn)` is a square matrix, if ______.
if `A = [(3,-4),(1,-1)]` then prove A"=` [(1+2n, -4n),(n, 1-2n)]` where n is any positive integer
If A and B are square matrices of the same order such that AB = BA, then prove by induction that AB" = B"A. Further, prove that (AB)" = A"B" for all n ∈ N
If A is a square matrix such that A2 = A, then (I + A)3 – 7 A is equal to ______.
Let A = `((2,-1),(3,4))`, B = `((5,2),(7,4))`, C= `((2,5),(3,8))` find a matrix D such that CD − AB = O
Using coding matrix A=`[(2,1),(3,1)]` encode the message THE CROW FLIES AT MIDNIGHT.
If\[A = \begin{bmatrix}2 & 3 \\ 4 & 5\end{bmatrix}\]prove that A − AT is a skew-symmetric matrix.
If A is a square matrix of order 3 with |A| = 4 , then the write the value of |-2A| .
If A = `[[0 , 2],[3, -4]]` and kA = `[[0 , 3"a"],[2"b", 24]]` then find the value of k,a and b.
If A and B are square matrices of the same order 3, such that ∣A∣ = 2 and AB = 2I, write the value of ∣B∣.
Identify the following matrix is singular or non-singular?
`[(5, 0, 5),(1, 99, 100),(6, 99, 105)]`
Identify the following matrix is singular or non-singular?
`[(7, 5),(-4, 7)]`
Find k if the following matrix is singular:
`[("k" - 1, 2, 3),(3, 1, 2),(1, -2, 4)]`
If A = `[(7, 3, 1),(-2, -4, 1),(5, 9, 1)]`, Find (AT)T.
The following matrix, using its transpose state whether it is symmetric, skew-symmetric, or neither:
`[(1, 2, -5),(2, -3, 4),(-5, 4, 9)]`
Select the correct option from the given alternatives:
Given A = `[(1, 3),(2, 2)]`, I = `[(1, 0),(0, 1)]` if A – λI is a singular matrix then _______
If A = `[(3, 1),(-1, 2)]`, then prove that A2 – 5A + 7I = O, where I is unit matrix of order 2
If A and B are matrices of same order, then (3A –2B)′ is equal to______.
If A `= [("cos x", - "sin x"),("sin x", "cos x")]`, find AAT.
A matrix is said to be a column matrix if it has
A square matrix in which elements in the diagonal are all 1 and rest are all zero is called an
If all the elements are zero, then matrix is said to be
If A and B are square matrices of order 3 × 3 and |A| = –1, |B| = 3, then |3AB| equals ______.
Let A = `[(0, -2),(2, 0)]`. If M and N are two matrices given by M = `sum_(k = 1)^10 A^(2k)` and N = `sum_(k = 1)^10 A^(2k - 1)` then MN2 is ______.
Let A and B be 3 × 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the systems of linear equations (A2B2 – B2A2)X = O, where X is a 3 × 1 column matrix of unknown variables and O is a 3 × 1 null matrix, has ______.
If A = `[(0, -tan θ/2),(tan θ/2, 0)]` and (I2 + A) (I2 – A)–1 = `[(a, -b),(b, a)]` then 13(a2 + b2) is equal to ______.
Assertion: Let the matrices A = `((-3, 2),(-5, 4))` and B = `((4, -2),(5, -3))` be such that A100B = BA100
Reason: AB = BA implies AB = BA for all positive integers n.