मराठी

Write the following function in the simplest form: tan-1(cosx-sinxcosx+sinx),-π4<x<3π4 - Mathematics

Advertisements
Advertisements

प्रश्न

Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`

बेरीज

उत्तर

`"tan"^-1 (("cos x - sin x")/("cos x + sin x"))`

`Rightarrow "tan"^-1 ((1 - "sin x"/"cos x")/(1 + "sin x"/"cos x"))`

`Rightarrow "tan"^-1 ((1 - "tan x")/(1 + "tan x"))`

`Rightarrow "tan"^-1 (1) - "tan"^-1 ("tan x")`

`Rightarrow pi/4 - "x"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?

संबंधित प्रश्‍न

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate tan (tan–1(– 4)).


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


If cos–1x > sin–1x, then ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"sin"^-1 ((-1)/2)`


`tan^-1  1/2 + tan^-1  2/11` is equal to


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×