मराठी

Prove that 2 Tan − 1 ( 1 5 ) + Sec − 1 ( 5 √ 2 7 ) + 2 Tan − 1 ( 1 8 ) = π 4 . - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

उत्तर

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + se c^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right)\]

= \[2 \tan^{- 1} \left( \frac{1}{5} \right) + \tan^{- 1} \left( \sqrt{\left( \frac{5\sqrt{2}}{7} \right)^2 - 1} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) \left[ \text { Using }se c^{- 1} x = \tan^{- 1} \sqrt{x^2 - 1} \right]\]

\[= 2 \tan^{- 1} \left( \frac{1}{5} \right) + \tan^{- 1} \left( \frac{1}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right)\]

= 2 \[\left( \tan^{- 1} \left( \frac{1}{5} \right) + \tan^{- 1} \left( \frac{1}{8} \right) \right) + \tan^{- 1} \left( \frac{1}{7} \right)\]

\[= 2 \tan^{- 1} \left( \frac{\frac{1}{5} + \frac{1}{8}}{1 - \frac{1}{5} \times \frac{1}{8}} \right) + \tan^{- 1} \left( \frac{1}{7} \right) \left[\text {  Using} \tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right) \right]\]

\[= 2 \tan^{- 1} \left( \frac{13}{39} \right) + \tan^{- 1} \left( \frac{1}{7} \right)\]

\[= 2 \tan^{- 1} \left( \frac{1}{3} \right) + \tan^{- 1} \left( \frac{1}{7} \right)\]

\[= \tan^{- 1} \left( \frac{\frac{2}{3}}{1 - \frac{1}{9}} \right) + \tan^{- 1} \left( \frac{1}{7} \right) \left[ \text { Using} 2 \tan^{- 1} x = \tan^{- 1} \frac{2x}{1 - x^2}, \text { if } \left| x \right| < 1 \right]\]

\[= \tan^{- 1} \left( \frac{3}{4} \right) + \tan^{- 1} \left( \frac{1}{7} \right)\]

\[= \tan^{- 1} \left( \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \times \frac{1}{7}} \right)\]

\[= \tan^{- 1} \left( 1 \right)\]

\[ = \frac{\pi}{4}\]

\[ = RHS\]

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2013-2014 (March) Delhi Set 3

संबंधित प्रश्‍न

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

Prove the following:

`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`


Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


sin (tan–1 x), | x| < 1 is equal to ______.


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


The value of sin (2tan-1 (0.75)) is equal to ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


sin (tan−1 x), where |x| < 1, is equal to:


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"cos"^-1 (1/2)`


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Measure of ∠CAB = ________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Measure of ∠EAB = ________.


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×