Advertisements
Advertisements
प्रश्न
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
उत्तर
We have `tan^-1 4 "x" + tan^-1 6"x" = π/(4)`
⇒ `tan ( tan^-1 4"x" + tan^-1 6"x") = tan π/(4)`
⇒ `(tan(tan^-1 4"x") + tan(tan^-1 6"x"))/(1-tan(tan^-1 4"x")·tan(tan^-1 6"x")` = 1
⇒ `(4"x" + 6"x")/(1-4"x" 6"x")` = 1
⇒ `(10"x")/(1 - 24"x"^2)` = 1
⇒ 24x2 + 10x - 1 = 0
⇒ 24x2 + 12x - 2x - 1 = 0
⇒ 12x (2x + 1) - 1 (2x + 1) = 0
⇒ (2x + 1) (12x - 1) = 0
⇒ `"x" = -(1)/(2) , (1)/(12)`
But `"x" = (-1)/(2)` does not satisfy the equation as the LHS will become negative. Therefore, the value of `"x" "is" (1)/(12)`.
संबंधित प्रश्न
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"sin"^-1 ((-1)/2)`
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.