Advertisements
Advertisements
प्रश्न
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
पर्याय
`2 + sqrt(5)`
`sqrt(5) - 2`
`(sqrt(5) + 2)/2`
`5 + sqrt(2)`
उत्तर
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is `sqrt(5) - 2`.
Explanation:
We have, `tan (1/2 cos^-1 2/sqrt(5))`
Let θ = `1/2 cos^-1 2/sqrt(5)`
⇒ 2θ = `cos^-1 2/sqrt(5)`
⇒ cos 2θ = `2/sqrt(5)`
⇒ `(1 - tan^2 theta)/(1 + tan^2 theta) = 2/sqrt(5)` ......`[because cos 2theta = (1 - tan^2 theta)/(1 + tan^2 theta)]`
⇒ `2 + 2 tan^2 theta = sqrt(5) - sqrt(5) tan^2 theta`
⇒ `sqrt(5) tan^2 theta + 2 tan^2 theta = sqrt(5) - 2`
⇒ `(sqrt(5) + 2) tan^2 theta = sqrt(5) - 2`
⇒ tan2θ = `((sqrt(5) - 2)(sqrt(5) - 2))/((sqrt(5) + 2)(sqrt(5) - 2))`
⇒ tan2θ = `(sqrt(5) - 2)^2/(5 - 4)`
⇒ tan2θ = `+- (sqrt(5) - 2)`
⇒ tan2θ = `sqrt(5) - 2, [-(sqrt(5) - 2) "is not required"]`
APPEARS IN
संबंधित प्रश्न
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If 3 tan–1x + cot–1x = π, then x equals ______.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The value of sin (2tan-1 (0.75)) is equal to ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"sin"^-1 ((-1)/2)`
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠CAB = ________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠EAB = ________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0