Advertisements
Advertisements
प्रश्न
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
उत्तर
`tan^-1x + tan^-1y = tan^-1 ((x + y)/(1 - xy))`
= `tan^-1 ("A")`
Here A = `(x + y)/(1 - xy)`
So L.H.S: `tan^-1x + tan^-1y + tan^-1z = tan^-1 ("A") + tan^-1z`
`tan^-1 (("A" + z)/(1 - "A"z)) = tan^-1 [((x + y)/(1 - xy + z))/(1 - (x + y)/(1 - xy) (z))]`
= `tan^-1 [((x + y + z(1 - xy))/(1 - xy))/((1 - xy - (x + y)z)/(1 - xy))]`
= `tan^-1 [(x + y + z - xyz)/(1 - xy - xz - yz)]`
= R.H.S
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If 3 tan–1x + cot–1x = π, then x equals ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The minimum value of sinx - cosx is ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"sin"^-1 (1/sqrt2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.