Advertisements
Advertisements
प्रश्न
`cos^(-1) (cos (7pi)/6)` is equal to ______.
पर्याय
`(7pi)/6`
`(5pi)/6`
`pi/3`
`pi/6`
उत्तर
`cos^(-1) (cos (7pi)/6)` is equal to `(5pi)/6`.
Explanation:
`"cos"^-1 ("cos" (7pi)/6) "x" in [0, pi]`
`Rightarrow "cos"^-1 ("cos" (7 pi)/6) = "cos"^-1 ("cos" (-7pi)/6)`
`= "cos"^-1 ("cos" (2 pi - (7pi)/6))`
`Rightarrow "cos"^-1 ["cos" (5 pi)/6] "where" (5pi)/6 in [0, pi]`
`Rightarrow therefore "cos"^-1 ("cos" (7pi)/6) `
`= "cos"^-1 ["cos" (5pi)/6]`
` = (5pi)/6`
APPEARS IN
संबंधित प्रश्न
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Find: ∫ sin x · log cos x dx
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If cos–1x > sin–1x, then ______.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
sin (tan−1 x), where |x| < 1, is equal to:
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠CAB = ________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Domain and Range of tan-1 x = ________.
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
Find the value of `sin^-1 [sin((13π)/7)]`
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`