Advertisements
Advertisements
प्रश्न
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
उत्तर
`sin^-1 8/17 + sin^-1 3/5 = tan^-1 8/sqrt(17^2 - 8^2) + tan^2 3/sqrt(5^2 - 3^2)` ...`[sin^-1 "p"/"h" = tan^-1 "p"/sqrt("h"^2 - "p"^2)]`
= `tan^-1 8/15 + tan^-1 3/4`
= `tan^-1 ((8/15 + 3/4)/(1 - 8/15 xx 3/4))` ...`[tan^-1x + tan^1y = tan^1((x + y)/(1 - x xx y))]`
= `tan^-1[((32 + 45)/60)/(1 - 24/60)]`
= `tan^-1 77/36`
APPEARS IN
संबंधित प्रश्न
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If cos–1x > sin–1x, then ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
The maximum value of sinx + cosx is ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
sin (tan−1 x), where |x| < 1, is equal to:
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`