मराठी

Prove that tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/√3 - Mathematics

Advertisements
Advertisements

प्रश्न

 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

उत्तर

 
 
 

Consider the left hand side

L.H.S = `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))`

We know that, 

`tan^(-1)(A)-tan^(-1)(B)= tan^(-1)((A-B)/(1+AB))`

Thus, L.H.S = `tan^(-1)(((6x-8x^3)/(1-12x^2)-(4x)/(1-4x^2))/(1+((6x-8x^3)/(1-12x^2))((4x)/(1-4x^2))))`

`=tan^(-1)(((6x-8x^3)(1-4x^2)-4x(1-12x^2))/(((1-12x^2)(1-4x^2))/(1+(4x(6x-8x^3))/((1-12x^2)(1-4x^2)))))`

`=tan^(-1)((((6x-8x^3)(1-4x^2)-4x(1-12x^2))/((1-12x^2)(1-4x^2)))/(((1-12x^2)(1-4x^2)+4x(6x-8x^3))/((1-12x^2)(1-4x^2))))`

`=tan^(-1)(((6x-8x^3)(1-4x^2)-4x(1-12x^2))/((1-12x^2)(1-4x^2)+4x(6x-8x^3)))`

`=tan^(-1)((6x-24x^3-8x^3+32x^5-4x+48x^3)/(1-4x^2-12x^2+48x^4+24x^2-32x^4))`

 `=tan^(-1)((32x^5+16x^3+2x)/(16x^4+8x^2+1))`

 `=tan^(-1)((2x(16x^4+8x^2+1))/(16x^4+8x^2+1))`

 = tan-12x

 Thus, L.H.S=R.H.S

 
 
 
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 1 N

संबंधित प्रश्‍न

Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Find: ∫ sin x · log cos x dx


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.


The maximum value of sinx + cosx is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


sin (tan−1 x), where |x| < 1, is equal to:


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


`"tan"^-1 (sqrt3)`


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Measure of ∠CAB = ________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Measure of ∠EAB = ________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Domain and Range of tan-1 x = ________.


`tan^-1  1/2 + tan^-1  2/11` is equal to


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×