Advertisements
Advertisements
Question
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Solution
To prove `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4` we will use the following formula
`tan^(-1)+tan^(-1)y=tan^(-1)((x+y)/(1-xy)),xy<1`
`Let S=tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)`
`S=[tan^(-1)(1/2)+tan^(-1)(1/5)]+tan^(-1)(1/8)`
`S=tan^(-1)((1/2+1/5)/(1-1/2 xx 1/5))+tan^(-1)(1/8)`
`S=tan^(-1)(7/9)+tan^(-1)(1/8)`
`=tan^(-1)((7/9+1/8)/(1-(7/9)xx(1/8)))`
`=tan^(-1)((56+9)/(72-7))`
`S=tan^(-1)(65/65)=tan^(-1)1=pi/4`
Hence, `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
APPEARS IN
RELATED QUESTIONS
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Find: ∫ sin x · log cos x dx
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
sin (tan−1 x), where |x| < 1, is equal to:
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`