Advertisements
Advertisements
Question
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
Options
`4 tan^-1x`
0
`pi/2`
π
Solution
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to `4 tan^-1x`.
Explanation:
Here, we have `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))`
= `2tan^-1x + 2tan^-1x` ....`[because 2 tan^-1x = sin^-1 (2x)/(1 + x^2)]`
= 4 tan–1x
APPEARS IN
RELATED QUESTIONS
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Evaluate tan (tan–1(– 4)).
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`