Advertisements
Advertisements
Question
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Solution
`2tan^-1x = cos^-1((1 - "a"^2)/(1 + "a"^2)) - cos^-1((1 - "b"^2)/(1 + "b"^2)) "a" > 0`
W.K.T `2tan^-1x = cos^-1((1 - x^2)/(1 + x^2))`
`cos^-1 [(1 - "a"^2)/(1 + "a"^2)] = 2tan^-1"a"`
`cos^-1[(1 - "b"^2)/(1 + "b"^2)] = 2tan^-1"b"`
R.H.S `cos^-1 [(1 - "a"^2)/(1 + "a"^2)] - cos^-1 [(1 - "b"^2)/(1 + "b"^2)]`
= `2tan^-1"a" - 2tam^-1"b"`
= `2[tan^-1"a" - tan^-1"b"]`
= `2[tan^-1 ("a" - "b")/(1 + "ab")]`
L.H.S = R.H.S
`2tan^1 [("a" - "b")/(1 + "ab")] = 2tan^-x`
x = `("a" - "b")/(1 + "ab"), "a" > 0`
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"sin"^-1 ((-1)/2)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`