English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the value of cot[sin-1 35+sin-1 45] - Mathematics

Advertisements
Advertisements

Question

Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`

Sum

Solution

`cot[sin^-1  3/5 + sin^-1  4/5]`

= `cot [sin^-1 (3/5 sqrt(1 - (4/5)^2) + 4/5 sqrt(1 - (3/5)^2))]`

= `cot[sin^-1 (3/5 sqrt(1 - 16/25) + 4/5 sqrt(1 - 9/25))]`

= `cot [sin^-1 (3/5 sqrt(9/25) + 4/5 sqrt(16/25))]`

= `cot [sin^-1 (3/5 xx 3/5 + 4/5 xx 4/5)]`

= `cot[sin^-1 (9/25 + 16/25)]`

= `cot[sin^-1 (25/25)]`

= `cot [sin^-1(1)]`

= `cot  pi/2`

= 0

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.5 [Page 166]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 3. (ii) | Page 166

RELATED QUESTIONS

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If 3 tan–1x + cot–1x = π, then x equals ______.


If cos–1x > sin–1x, then ______.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×