English

Find the value of the given expression. sin-1(sin 2π3) - Mathematics

Advertisements
Advertisements

Question

Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`

Sum

Solution

`sin^(-1) (sin  2pi/3)`

We know that sin−1 (sin x) = x if x in `[-pi/2, pi/2]`, which is the principal value branch of sin−1x.

Here, `2pi/3 in [(-pi)/2, pi/2]`

Now `sin^(-1) (sin 2pi/3)` can be written as 

`sin^(-1) (sin  (2pi)/3) `

`= sin^(-1) [sin (pi - (2pi)/3)] `

`= sin^(-1) (sin  pi/3)  "where" pi/3 in [(-pi)/2, pi/ 2]`

`:. sin^(-1)  (sin  (2pi)/2) `

`= sin^(-1) (sin  pi/3) `

` = pi/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.2 [Page 48]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 16 | Page 48

RELATED QUESTIONS

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


sin (tan–1 x), | x| < 1 is equal to ______.


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


The maximum value of sinx + cosx is ____________.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


If `"tan"^-1 ("cot"  theta) = 2theta, "then"  theta` is equal to ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


sin (tan−1 x), where |x| < 1, is equal to:


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.


`"sin"^-1 (1/sqrt2)`


`"cos"^-1 (1/2)`


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Measure of ∠EAB = ________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

𝐴' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Domain and Range of tan-1 x = ________.


`tan^-1  1/2 + tan^-1  2/11` is equal to


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×