Advertisements
Advertisements
Question
If cos–1x > sin–1x, then ______.
Options
`1/sqrt(2) < x ≤ 1`
`0 ≤ x < 1/2`
`-1 ≤ x < 1/2`
x > 0
Solution
If cos–1x > sin–1x, then `-1 ≤ x < 1/2`.
Explanation:
Here, given that cos–1x > sin–1x
⇒ `sin[cos^-1x] > x`
⇒ `sin[sin^-1 sqrt(1 - x^2)] > x`
⇒ `sqrt(1 - x^2) > x`
⇒ `x < sqrt(1 - x^2)`
⇒ `x^2 < 1 - x^2`
⇒ `2x^2 < 1`
⇒ `x^2 < 1/2`
⇒ `x < +- 1/sqrt(2)`
We know that – 1 ≤ x ≤ 1
So – 1 ≤ x < `1/sqrt(2)`.
APPEARS IN
RELATED QUESTIONS
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
sin (tan–1 x), | x| < 1 is equal to ______.
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that cot–17 + cot–18 + cot–118 = cot–13
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If 3 tan–1x + cot–1x = π, then x equals ______.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
sin (tan−1 x), where |x| < 1, is equal to:
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.