English

If cos–1x > sin–1x, then ______ - Mathematics

Advertisements
Advertisements

Question

If cos–1x > sin–1x, then ______.

Options

  • `1/sqrt(2) < x ≤ 1`

  • `0 ≤ x < 1/2`

  • `-1 ≤ x  < 1/2`

  • x > 0

MCQ
Fill in the Blanks

Solution

If cos–1x > sin–1x, then `-1 ≤ x  < 1/2`.

Explanation:

Here, given that cos–1x > sin–1x

⇒ `sin[cos^-1x] > x`

⇒ `sin[sin^-1 sqrt(1 - x^2)] > x`

⇒ `sqrt(1 - x^2) > x`

⇒ `x < sqrt(1 - x^2)`

⇒ `x^2 < 1 - x^2`

⇒ `2x^2 < 1`

⇒ `x^2 < 1/2`

⇒ `x < +- 1/sqrt(2)`

We know that – 1 ≤ x ≤ 1

So – 1 ≤ x < `1/sqrt(2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 39]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 37 | Page 39

RELATED QUESTIONS

Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


sin (tan–1 x), | x| < 1 is equal to ______.


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Prove that cot–17 + cot–18 + cot–118 = cot–13


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If 3 tan–1x + cot–1x = π, then x equals ______.


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


`"cot" (pi/4 - 2  "cot"^-1  3) =` ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


sin (tan−1 x), where |x| < 1, is equal to:


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×