Advertisements
Advertisements
Question
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
Options
0
1
2
Infinite
Solution
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is infinite.
Explanation:
We have `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)`
⇒ `sqrt(2 cos^2x) = sqrt(2)x` .....`[because cos^-1 (cos x) = x]`
⇒ `sqrt(2) cos x = sqrt(2)x`
⇒ cos x = x
Which does not satisfy for any value of x.
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Find: ∫ sin x · log cos x dx
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
The minimum value of sinx - cosx is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.