English

The number of real solutions of the equation 1+cos2x=2cos-1(cosx) in [π2,π] is ______. - Mathematics

Advertisements
Advertisements

Question

The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.

Options

  • 0

  • 1

  • 2

  • Infinite

MCQ
Fill in the Blanks

Solution

The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is infinite.

Explanation:

We have `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` 

⇒ `sqrt(2 cos^2x) = sqrt(2)x`  .....`[because cos^-1 (cos x) = x]`

⇒ `sqrt(2) cos x = sqrt(2)x`

⇒ cos x = x

Which does not satisfy for any value of x.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 39]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 36 | Page 39

RELATED QUESTIONS

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


Find: ∫ sin x · log cos x dx


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


The minimum value of sinx - cosx is ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`tan^-1  1/2 + tan^-1  2/11` is equal to


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×