Advertisements
Advertisements
Question
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Solution
Let x = `tan^2 theta` Then `sqrtx= tan theta`
=> `theta = tan^(-1) sqrtx`
`:. (1-x)/(1+x) `
=` (1-tan^2 theta)/(1+tan^2 theta) `
= `cos 2 theta`
Now we have,
R.H.S = `1/2 cos^(-1) ((1-x)/(1+x)) `
`= 1/2 cos^(-1)(cos 2 theta) `
`= 1/2 xx 2theta `
`= theta = tan^(-1) sqrtx` = L.H.S
APPEARS IN
RELATED QUESTIONS
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Prove that cot–17 + cot–18 + cot–118 = cot–13
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If 3 tan–1x + cot–1x = π, then x equals ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
`"tan"^-1 (sqrt3)`
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`