English

Prove that: tan-1x=12cos-1(1-x1+x),x∈[0,1] - Mathematics

Advertisements
Advertisements

Question

Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`

Sum

Solution

Let x = `tan^2 theta` Then `sqrtx= tan theta`

=>  `theta = tan^(-1) sqrtx`

`:. (1-x)/(1+x) `

=` (1-tan^2 theta)/(1+tan^2 theta) `

= `cos 2  theta`

Now we have,

R.H.S = `1/2 cos^(-1) ((1-x)/(1+x)) `

`= 1/2 cos^(-1)(cos 2 theta) `

`= 1/2 xx 2theta `

`= theta =  tan^(-1) sqrtx` = L.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.3 [Page 52]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 9 | Page 52

RELATED QUESTIONS

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x


Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the value of the expression in terms of x, with the help of a reference triangle

cos (tan–1 (3x – 1))


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Find the value of `cot[sin^-1  3/5 + sin^-1  4/5]`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Prove that cot–17 + cot–18 + cot–118 = cot–13


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If 3 tan–1x + cot–1x = π, then x equals ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.


`"tan"^-1 (sqrt3)`


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×