Advertisements
Advertisements
Question
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
Solution
If a1, a2, a3, ..., an are the terms of an arithmetic progression
∴ d = a2 – a1
= a3 – a2
= a4 – a3 ....
∴ `tan[tan^-1 (("a"_2 - "a"_1)/(1 + "a"_1"a"_2)) + tan^-1 (("a"_3 - "a"_2)/(1 + "a"_2 "a"_3)) + tan^-1 (("a"_4 - "a"_3)/(1 + "a"_3 "a"_4)) + ...... + tan^-1 (("a"_"n" - "a"_("n" - 1))/(1 + "a"_("n" - 1) * "a"_"n"))]``
⇒ tan [(tan–1 a2 – tan–1 a1) + (tan–1 a3 – tan–1 a2) + (tan–1 a4 – tan–1 a3) + ... + (tan–1 an – tan–1 an – 1)] .....`[because tan^-1 (x - y)/(1 + xy) = tan^-1x - tan^-1y]`
⇒ tan [(tan–1 a2 – tan–1 a1 + tan–1 a3 – tan–1 a2 + tan–1 a4 – tan–1 a3 + ... + tan–1 an – tan–1 an – 1]
⇒ tan [tan–1 an – tan–1 a1]
⇒ `tan[tan^-1 (("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n"))]`
⇒ `("a"_"n" - "a"_1)/(1 + "a"_1"a"_"n")` .....[∵ tan (tan–1x) = x]
APPEARS IN
RELATED QUESTIONS
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"tan"^-1 (sqrt3)`
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.