English

Evaluate tan (tan–1(– 4)). - Mathematics

Advertisements
Advertisements

Question

Evaluate tan (tan–1(– 4)).

Sum

Solution

Since tan (tan–1x) = x, ∀ x ∈ R, tan (tan–1(– 4)

= – 4.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Solved Examples [Page 21]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Solved Examples | Q 5 | Page 21

RELATED QUESTIONS

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x


Prove the following: 

`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Choose the correct alternative:

If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


Prove that cot–17 + cot–18 + cot–118 = cot–13


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.


If `"tan"^-1 ("cot"  theta) = 2theta, "then"  theta` is equal to ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"cos"^-1 1/2 + 2  "sin"^-1 1/2` is equal to ____________.


`"cos"^-1 (1/2)`


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×