Advertisements
Advertisements
Question
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
Options
π
`-pi/2`
0
`2 sqrt3`
Solution
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to `-pi/2`.
Explanation:
`=> "tan"^-1 sqrt3 - "cot"^-1 (-sqrt3)`
`=> "tan"^-1 ("tan" pi/3) - "cot"^-1 (-"cot" pi/6)`
`=> pi/3 - "cot"^-1 ["cot" (pi - pi/6)]`
`=> pi/3 - "cot"^-1 ["cot" ((5pi)/6)]`
`=> pi/6 - (5 pi)/6`
`= (2pi - 5pi)/6`
`= - (3pi)/6`
`= - pi/2`
RELATED QUESTIONS
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate `tan^-1(sin((-pi)/2))`.
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The maximum value of sinx + cosx is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`