Advertisements
Advertisements
Question
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Solution
The given equation is `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
`cos (tan^(-1) x) = sin(cot^(-1) 3/4)`
`=> cos (tan^(-1) x) = cos(pi/2 - cot^(-1) 3 /4)` `[sintheta = cos(pi/2 - theta)]`
`=> cos(tan^(-1) x) = cos(tan^(-1) (3/4))` `(tan^(-1) x + cot^(-1) x = pi/2)`
`=> tan^(-1) x = tan^(-1) (3/4)`
`=> x = 3/4`
APPEARS IN
RELATED QUESTIONS
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If cos–1x > sin–1x, then ______.
The minimum value of sinx - cosx is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.