English

Solve the Following Equation for X: `Cos (Tan(-1) X) = Sin (Cot(-1) 3by4)` - Mathematics

Advertisements
Advertisements

Question

Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`

Solution

The given equation is `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`

`cos (tan^(-1) x) = sin(cot^(-1)  3/4)`

`=> cos (tan^(-1) x) = cos(pi/2 - cot^(-1)  3 /4)`              `[sintheta = cos(pi/2 - theta)]`

`=> cos(tan^(-1) x) = cos(tan^(-1)  (3/4))`         `(tan^(-1) x + cot^(-1) x = pi/2)`

`=> tan^(-1) x = tan^(-1) (3/4)`

`=> x = 3/4`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (March) Delhi Set 3

RELATED QUESTIONS

Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If cos–1x > sin–1x, then ______.


The minimum value of sinx - cosx is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`"cos"^-1 1/2 + 2  "sin"^-1 1/2` is equal to ____________.


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×