मराठी

Solve for X : Tan − 1 ( 2 − X 2 + X ) = 1 2 Tan − 1 X 2 , X > 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`

बेरीज

उत्तर

Given that

⇒ `tan^-1 ((2-"x")/(2+"x")) = (1)/(2) tan^-1  ("x")/(2)`

⇒ `2tan^-1 ((2-"x")/(2+"x")) = tan^-1  ("x")/(2)`

⇒ `tan^-1  (2((2-"x")/(2+"x")))/(1 - ((2-"x")/(2+"x"))^2)  = tan^-1  ("x")/(2)` 

⇒ `tan^-1  (4 - x^2)/(4x) = tan^-1  ("x")/(2)`

⇒ `(4 -"x"^2)/(4"x") = ("x")/(2)`

`"x" = 2/sqrt3   ...[∵ "x" >0]`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (March) All India Set 1 E

संबंधित प्रश्‍न

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Write the following function in the simplest form:

`tan^(-1)  (sqrt(1+x^2) -1)/x, x != 0`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


Solve: tan-1 4 x + tan-1 6x `= π/(4)`.


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If 3 tan–1x + cot–1x = π, then x equals ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×