Advertisements
Advertisements
प्रश्न
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
उत्तर
Given that
⇒ `tan^-1 ((2-"x")/(2+"x")) = (1)/(2) tan^-1 ("x")/(2)`
⇒ `2tan^-1 ((2-"x")/(2+"x")) = tan^-1 ("x")/(2)`
⇒ `tan^-1 (2((2-"x")/(2+"x")))/(1 - ((2-"x")/(2+"x"))^2) = tan^-1 ("x")/(2)`
⇒ `tan^-1 (4 - x^2)/(4x) = tan^-1 ("x")/(2)`
⇒ `(4 -"x"^2)/(4"x") = ("x")/(2)`
∴ `"x" = 2/sqrt3 ...[∵ "x" >0]`.
APPEARS IN
संबंधित प्रश्न
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If 3 tan–1x + cot–1x = π, then x equals ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.