Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
पर्याय
tan2α
0
– 1
tan 2α
उत्तर
– 1
APPEARS IN
संबंधित प्रश्न
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.