Advertisements
Advertisements
प्रश्न
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
उत्तर
L.H.S = `tan^(-1) 1/5 + tan^(-1) 1/7 + tan^(-1) 1/3 + tan^(-1) 1/8`
= `tan^(-1) ((1/5 + 1/7)/(1-1/5 xx 1/7)) + tan^(-1) ((1/3 + 1/8)/(1-1/3 xx 1/8))` `" "[tan^(-1) x + tan^(-1) y = tan^(-1) (x + y)/(1 - xy)]`
`= tan^(-1) ((7+5)/(35-1)) + tan^(-1) ((8 + 3)/(24 - 1))`
`= tan^(-1) 12/34 + tan^(-1) 11/23`
= `tan^(-1) ((6/17 + 11/23 )/(1- 6/17 xx 11/23))`
`= tan^(-1) ((138 + 187)/(391 - 66))`
`= tan^(-1) (325/325) = tan^(-1) `
`= pi/4` = R.H.S
APPEARS IN
संबंधित प्रश्न
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Evaluate tan (tan–1(– 4)).
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`tan^-1 1/2 + tan^-1 2/11` is equal to
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`