मराठी

Find the Derivative of the Following Function - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`

उत्तर

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`

            f1(x)                            f2(x)

`Let  f_1(x)=cos^−1 [sin sqrt((1+x)/2)] and f_2(x)=x^x`


Now,

`f_1(x)=cos^−1 [sin sqrt((1+x)/2)]`

`= f_1(x)=cos^−1 [cos(pi/2- sqrt((1+x)/2))]`

`=pi/2- sqrt((1+x)/2)`

`⇒f_1'(x)=−1/2sqrt(2/(1+x))=−sqrt(1/(2(1+x)))`

and

`f_2(x)=x^x` Taking log on both sides, we get

`log f_2(x)=xlogx`

`⇒1/(f_2(x)) f2′(x)=logx+x⋅1/x`

`=>1/(f_2(x)) f2′(x)=logx+1`

`=>f2′(x)=f_2(x)(logx+1)`

`=>f2′(x)=x^x(logx+1)`

`∵f(x)=f_1(x)+f_2(x)`

`∵f'(x)=f_1'(x)+f_2'(x)`

`=-sqrt(1/(2(1+x)))+x^x (logx+1)`

At x=1

`f'(1)=-sqrt(1/(2(1+1)))1^1(log1+1)`

`=-1/2+1=1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

संबंधित प्रश्‍न

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


Find the approximate value of tan−1 (1.001).


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`


Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


`lim_("x"-> 0) ("cosec x - cot x")/"x"`  is equal to ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of sin x with respect to log x is ____________.


The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to


Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.


Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×