Advertisements
Advertisements
प्रश्न
Find the derivative of the following function f(x) w.r.t. x, at x = 1 :
`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`
उत्तर
`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`
f1(x) f2(x)
`Let f_1(x)=cos^−1 [sin sqrt((1+x)/2)] and f_2(x)=x^x`
Now,
`f_1(x)=cos^−1 [sin sqrt((1+x)/2)]`
`= f_1(x)=cos^−1 [cos(pi/2- sqrt((1+x)/2))]`
`=pi/2- sqrt((1+x)/2)`
`⇒f_1'(x)=−1/2sqrt(2/(1+x))=−sqrt(1/(2(1+x)))`
and
`f_2(x)=x^x` Taking log on both sides, we get
`log f_2(x)=xlogx`
`⇒1/(f_2(x)) f2′(x)=logx+x⋅1/x`
`=>1/(f_2(x)) f2′(x)=logx+1`
`=>f2′(x)=f_2(x)(logx+1)`
`=>f2′(x)=x^x(logx+1)`
`∵f(x)=f_1(x)+f_2(x)`
`∵f'(x)=f_1'(x)+f_2'(x)`
`=-sqrt(1/(2(1+x)))+x^x (logx+1)`
At x=1
`f'(1)=-sqrt(1/(2(1+1)))1^1(log1+1)`
`=-1/2+1=1/2`
APPEARS IN
संबंधित प्रश्न
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`
if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.
Find `dy/dx` in the following:
`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Differentiate w.r.t. x the function:
`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`
If `sqrt(1-x^2) + sqrt(1- y^2)` = a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`
Find the approximate value of tan−1 (1.001).
Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).
If y = sin-1 x + cos-1x find `(dy)/(dx)`.
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.
`lim_("x"-> 0) ("cosec x - cot x")/"x"` is equal to ____________.
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
The derivative of sin x with respect to log x is ____________.
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.
Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.