Advertisements
Advertisements
प्रश्न
Find the approximate value of tan−1 (1.001).
उत्तर
Let f(y) = tan-1y
Differentiating f(y) w.r.t.y, we have
⇒ f'(y) = `1/( 1 + y^2)`
y = 1.001 = x + Δx
Here,
x = 1
Δx = 0.001
Therefore, f(x) = f(1) = tan-1(1) = `π/4`
Similarly, f'(x) = f'(1) = `1/(1 + 1^2) = 1/2`
Now,
f(y) = f( x + Δx ) = f(x) + Δx. f'(x) ...[ ∵ Δx <<< x ]
tan-1y = tan-1( x + Δx ) = tan-1x + Δx.`(1/( 1 + x^2))`
∴ tan-11.001 = tan-1( 1 + 1.001 ) = tan-11 + (0.001). tan-11
⇒ tan-11.001 = `π/4 + 0.001 (1/2)`
⇒ tan-11.001 = `π/4 + 0.0005` ≈ 0.7855
Hence the approxiate value of tan-10.001 will be 0.7855.
APPEARS IN
संबंधित प्रश्न
Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.
If `y=sin^-1(3x)+sec^-1(1/(3x)), ` find dy/dx
Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`
Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`
If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x2≤1, then find dy/dx.
Find `dy/dx` in the following:
`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`
Find `dy/dx` in the following:
`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`
Find `dx/dy` in the following:
`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`
Find `dy/dx` in the following:
`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x < 1/sqrt2`
Find `dy/dx` in the following:
`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`
Differentiate w.r.t. x the function:
`cot^(-1) [(sqrt(1+sinx) + sqrt(1-sinx))/(sqrt(1+sinx) - sqrt(1-sinx))]`, ` 0 < x < pi/2`
Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`
If `xsqrt(1+y) + y sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`
Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x
if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`
If y = (sec-1 x )2 , x > 0, show that
`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`
If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y" "cos"^2"x" = 0`
If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`
If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`
Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.
`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.
If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then" ("d"^2"y")/("dx"^2)` is ____________.
The derivative of sin x with respect to log x is ____________.
The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to
If y = sin–1x, then (1 – x2)y2 is equal to ______.
Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.
Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.