मराठी

If Y = Cos (Sin X), Show That: ("D"^2"Y")/("Dx"^2) + "Tan X" "Dy"/"Dx" + "Y" "Cos"^2"X" = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`

बेरीज

उत्तर

y = cos (sin x)      ....(i)

`"dy"/"dx" = -"sin" ("sin x") "cos x"`       ...(ii)

`("d"^2"y")/("dx"^2)` = sin (sin x) sin x - cos x (cos (sin x)) cos x

= sin (sin x) sin x - cos2x.y       .....(using (i))

= sin (sin x) cos x `((-"sin x")/"cos x")` - y cos2

=`"dy"/"dx"` (- tan x) - y cos2x         ......(using(ii))

`("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x  < 1/sqrt2`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Differentiate w.r.t. x the function:

`(sin x - cos x)^(sin x - cos x), pi/4 < x < (3pi)/4`


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


If `xsqrt(1+y) + y  sqrt(1+x) = 0`, for, −1 < x <1, prove that `dy/dx = 1/(1+ x)^2`


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.


The function f(x) = cot x is discontinuous on the set ______.


Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of sin x with respect to log x is ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×