मराठी

If Y = ( Sin − 1 X ) 2 , Prove that ( 1 − X 2 ) D 2 Y D X 2 − X D Y D X − 2 = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

If `"y" = (sin^-1 "x")^2, "prove that" (1 - "x"^2) (d^2"y")/(d"x"^2) - "x" (d"y")/(d"x") - 2 = 0`.

बेरीज

उत्तर

Here,

`"y" = (sin^-1 "x")^2`

Now,

`"y"_1 = 2 sin^-1 "x" (1)/(sqrt(1 - "x"^2)`

 

⇒ `"y"_2 = (2)/(1 - "x"^2) + (2"x" sin^-1 "x")/((1 - "x"^2)^(3/2)`

 

⇒ `"y"_2 = (2)/(1 - "x"^2) + (2"x" sin^-1 "x")/((1 -"x"^2) sqrt(1 - "x"^2)`

 

⇒ `"y"_2 = (2)/(1 -"x"^2) + ("xy"_1)/((1 - "x"^2)`

 

⇒ `"y"_2 (1 - "x"^2) = 2 + "xy"_1`

 

⇒ `"y"_2 (1 - "x"^2) - "xy"_1 - 2 = 0`

 

Therefore, `(1 - "x"^2)  (d^2"y")/(d"x"^2) - "x"  (d"y")/(d"x") - 2 = 0`

Hence Proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/1/3

संबंधित प्रश्‍न

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = cos^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x  < 1/sqrt2`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


Differentiate `tan^(-1) ((1+cosx)/(sin x))` with respect to x


if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


Find \[\frac{dy}{dx}\] at \[t = \frac{2\pi}{3}\] when x = 10 (t – sin t) and y = 12 (1 – cos t).


If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of sin x with respect to log x is ____________.


The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to


Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×