मराठी

Find : d/dx cos^−1 ((x−x^(−1))/(x+x^(−1))) - Mathematics

Advertisements
Advertisements

प्रश्न

Find : ` d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`

उत्तर

`y= d/dx cos^−1 ((x−x^(−1))/(x+x^(−1)))`

`= d/dx cos^−1 ((x^2−1)/(x^2+1))`

`Let x=tanθ`

`∴y=cos^(−1) ((tan^2θ−1)/(tan^2θ+1))`

`=cos^(-1)(-(1-tan^2theta)/(1+tan^2theta))`

`=pi - cos^(-1) (cos 2theta) [cos^(-1)(-x)=pi- cos^(-1)x]`

`=π−2θ`

`=π−2tan^(−1)x`

Differentiating both sides w.r.t. x, we have

`dy/dx=0-2xx1/(1+x^2)`

`therefore d/dx cos^-1 ((x-x^(-1))/(x+x^(-1)))=-2/(1+x^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Patna Set 2

संबंधित प्रश्‍न

Differentiate `cos^-1((3cosx-2sinx)/sqrt13)` w. r. t. x.


If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`

(a) y

(b) x

(c) y/x

(d) 0


If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


Find the approximate value of tan−1 (1.001).


If y = cos (sin x), show that: `("d"^2"y")/("dx"^2) + "tan x" "dy"/"dx" + "y"  "cos"^2"x" = 0`


If y = sin-1 x + cos-1x find  `(dy)/(dx)`.


If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`


The function f(x) = cot x is discontinuous on the set ______.


Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


The derivative of sin x with respect to log x is ____________.


The derivative of `sin^-1 ((2x)/(1 + x^2))` with respect to `cos^-1 [(1 - x^2)/(1 + x^2)]` is equal to


Let f(x) = `cos(2tan^-1sin(cot^-1sqrt((1 - x)/x))), 0 < x < 1`. Then ______.


Differentiate `sec^-1 (1/sqrt(1 - x^2))` w.r.t. `sin^-1 (2xsqrt(1 - x^2))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×