मराठी

If Y = ( Sin − 1 X ) 2 , Prove that ( 1 − X 2 ) D 2 Y D X 2 − X D Y D X − 2 = 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

If y = `(sin^-1 x)^2,` prove that `(1-x^2) (d^2y)/dx^2 - x dy/dx -2 = 0.`

बेरीज

उत्तर

Here,

`y = (sin^-1 x)^2`

⇒ `y_1 = 2 sin^-1 x 1/sqrt(1-x^2)`

⇒ `y_2 = 2/(1-x^2) + (2x sin^-1 x)/(1-x^2)^(3/2)`

⇒ `y_2 = 2/(1-x^2) + (2x sin^-1 x)/((1-x^2)sqrt(1-x^2)`

⇒ `y_2 = 2/(1-x^2) + (xy_1)/((1-x^2)`

⇒ `y_2 (1-x^2) = 2 + xy_1`

⇒ `y_2 (1-x^2) - xy_1 - 2 =0`

⇒  Therefore,  `(1 -x^2) (d^2y)/dx^2 - x dy/dx - 2 = 0`

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/1/1

संबंधित प्रश्‍न

If `sec((x+y)/(x-y))=a^2. " then " (d^2y)/dx^2=........`

(a) y

(b) x

(c) y/x

(d) 0


If `y=sin^-1(3x)+sec^-1(1/(3x)), `  find dy/dx


Differentiate `tan^(-1)(sqrt(1-x^2)/x)` with respect to `cos^(-1)(2xsqrt(1-x^2))` ,when `x!=0`


Find the derivative of the following function f(x) w.r.t. x, at x = 1 : 

`f(x)=cos^-1[sin sqrt((1+x)/2)]+x^x`


if `y = sin^(-1)[(6x-4sqrt(1-4x^2))/5]` Find `dy/dx `.


If `y=tan^(−1) ((sqrt(1+x^2)+sqrt(1−x^2))/(sqrt(1+x^2)−sqrt(1−x^2)))` , x21, then find dy/dx.


Find `dy/dx` in the following:

`y = tan^(-1) ((3x -x^3)/(1 - 3x^2)), - 1/sqrt3 < x < 1/sqrt3`


Find `dy/dx` in the following:

`y = sin^(-1) ((1-x^2)/(1+x^2)), 0 < x < 1`


Find `dx/dy` in the following:

`y = cos^(-1) ((2x)/(1+x^2)), -1 < x < 1`


Find `dy/dx` in the following:

`y = sin^(-1)(2xsqrt(1-x^2)), -1/sqrt2 < x  < 1/sqrt2`


Find `dy/dx` in the following:

`y = sec^(-1) (1/(2x^2 - 1)), 0 < x < 1/sqrt2`


Find `dy/dx, if y = sin^-1 x + sin^-1 sqrt (1 - x^2) , 0<x <1`


If `sqrt(1-x^2)  + sqrt(1- y^2)` =  a(x − y), show that dy/dx = `sqrt((1-y^2)/(1-x^2))`


if `x = tan(1/a log y)`, prove that `(1+x^2) (d^2y)/(dx^2) + (2x + a) (dy)/(dx) = 0`


Solve `cos^(-1)(sin cos^(-1)x) = pi/2`


If y = (sec-1 x )2 , x > 0, show that 

`x^2 (x^2 - 1) (d^2 y)/(dx^2) + (2x^3 - x ) dy/dx -2 = 0`


If `log (x^2 + y^2) = 2 tan^-1 (y/x)`, show that `(dy)/(dx) = (x + y)/(x - y)`


The function f(x) = cot x is discontinuous on the set ______.


Trigonometric and inverse-trigonometric functions are differentiable in their respective domain.


`lim_("h" -> 0) (1/("h"^2 sqrt(8 + "h")) - 1/(2"h"))` is equal to ____________.


`lim_("x" -> -3) sqrt("x"^2 + 7 - 4)/("x" + 3)` is equal to ____________.


`"d"/"dx" {"cosec"^-1 ((1 + "x"^2)/(2"x"))}` is equal to ____________.


If `"y = sin"^-1 ((sqrt"x" - 1)/(sqrt"x" + 1)) + "sec"^-1 ((sqrt"x" + 1)/(sqrt"x" - 1)), "x" > 0, "then"  "dy"/"dx"` is ____________.


If y `= "cos"^2 ((3"x")/2) - "sin"^2 ((3"x")/2), "then"  ("d"^2"y")/("dx"^2)` is ____________.


The derivative of sin x with respect to log x is ____________.


If y = sin–1x, then (1 – x2)y2 is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×