English

The solution of dddydx=(yx)13 is y23-x23 = c. - Mathematics

Advertisements
Advertisements

Question

The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is True.

Explanation:

The given differential equation is `("d"y)/("d"x) = (y/x)^(1/3)`

⇒ `("d"y)/("d"x) = y^(1/3)/x^(1/3)`

⇒ `("d"y)/y^(1/3) = ("d"x)/x^(1/3)`

Integrating both sides, we get

`int ("d"y)/y^(1/3) = int ("d"x)/x^(1/3)`

⇒ `int y^(-1/3) "d"y = int x^(-1/3) "d"x`

⇒ `1/(- 1/3 + 1) y^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3) "d"x`

⇒ `1/(- 1/3 + 1) y^(-1/3 + 1) = 1/(-1/3 + 1) * x^(-1/3 + 1) + "c"`

⇒ `3/2 y^(2/3) = 3/2 x^(2/3) + "c"`

⇒ `y^(2/3) = x^(2/3) + 2/3 "c"`

⇒ `y^(2/3) - x^(2/3) = "k"["k" = 2/3 "c"]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise [Page 203]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise | Q 77.(vii) | Page 203

RELATED QUESTIONS

The solution of the differential equation dy/dx = sec x – y tan x is:

(A) y sec x = tan x + c

(B) y sec x + tan x = c

(C) sec x = y tan x + c

(D) sec x + y tan x = c


Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x sin x : xy' = `y + x  sqrt (x^2 - y^2)`  (x ≠ 0 and x > y or x < -y)


Find a particular solution of the differential equation `dy/dx + y cot x = 4xcosec x(x != 0)`, given that y = 0 when `x = pi/2.`


If y = etan x+ (log x)tan x then find dy/dx


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is


The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is


The general solution of the differential equation ex dy + (y ex + 2x) dx = 0 is


Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.


\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]


\[\frac{dy}{dx} - y \tan x = - 2 \sin x\]


(1 + y + x2 y) dx + (x + x3) dy = 0


`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:- `y dx + x log  (y)/(x)dy-2x dy=0`


Solve the following differential equation:-

\[x\frac{dy}{dx} + 2y = x^2 , x \neq 0\]


The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.


If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.


Integrating factor of the differential equation `cosx ("d"y)/("d"x) + ysinx` = 1 is ______.


tan–1x + tan–1y = c is the general solution of the differential equation ______.


General solution of `("d"y)/("d"x) + ytanx = secx` is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


The solution of the differential equation `("d"y)/("d"x) = (x + 2y)/x` is x + y = kx2.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×