English

Solve the Following Differential Equation:- ( X + 3 Y 2 ) D Y D X = Y - Mathematics

Advertisements
Advertisements

Question

Solve the following differential equation:-

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]

Sum

Solution

We have,

\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]

\[ \Rightarrow \frac{dx}{dy} = \frac{1}{y}\left( x + 3 y^2 \right) \]

\[ \Rightarrow \frac{dx}{dy} - \frac{1}{y}x = 3y . . . . . \left( 1 \right)\]

Clearly, it is a linear differential equation of the form

\[\frac{dx}{dy} + Px = Q\]

\[\text{where }P = - \frac{1}{y}\text{ and }Q = 3y\]

\[ \therefore I . F . = e^{\int P\ dy} \]

\[ = e^{- \int\frac{1}{y}dy} \]

\[ = e^{- \log \left| y \right|} = \frac{1}{y}\]

Multiplying both sides of (1) by I . F . = `1/y`, we get

\[\frac{1}{y}\left( \frac{dx}{dy} - \frac{1}{y}x \right) = \frac{1}{y} \times 3y\]

\[ \Rightarrow \frac{1}{y}\left( \frac{dx}{dy} - \frac{1}{y}x \right) = 3\]

Integrating both sides with respect to y, we get

\[x\frac{1}{y} = \int 3dy + C\]

\[ \Rightarrow x\frac{1}{y} = 3y + C\]

\[ \Rightarrow x = 3 y^2 + Cy\]

\[\text{Hence, }x = 3 y^2 + Cy\text{ is the required solution.}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 22: Differential Equations - Revision Exercise [Page 147]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 22 Differential Equations
Revision Exercise | Q 66.15 | Page 147

RELATED QUESTIONS

Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.


The differential equation of `y=c/x+c^2` is :

(a)`x^4(dy/dx)^2-xdy/dx=y`

(b)`(d^2y)/dx^2+xdy/dx+y=0`

(c)`x^3(dy/dx)^2+xdy/dx=y`

(d)`(d^2y)/dx^2+dy/dx-y=0`


Find the differential equation representing the curve y = cx + c2.


Find the general solution of the following differential equation : 

`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`


Solve the differential equation `dy/dx -y =e^x`


Show that the general solution of the differential equation  `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.


Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.


The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is


The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is


If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then


The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is


The number of arbitrary constants in the particular solution of a differential equation of third order is


The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is


Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.

 

`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


Solve the differential equation:

(1 + y2) dx = (tan1 y x) dy


Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.


For the following differential equation, find the general solution:- `y log y dx − x dy = 0`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


Solve the following differential equation:-

\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]


Solve the following differential equation:-

\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]


Solve the following differential equation:-

(1 + x2) dy + 2xy dx = cot x dx


Solve the following differential equation:-

\[\left( x + y \right)\frac{dy}{dx} = 1\]


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.


Solution of differential equation xdy – ydx = 0 represents : ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.


Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?


The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.


The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.


General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.


The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.


Which of the following differential equations has `y = x` as one of its particular solution?


Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`


Find the general solution of the differential equation:

`log((dy)/(dx)) = ax + by`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×