Advertisements
Advertisements
Question
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Solution
We have,
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
\[ \Rightarrow \frac{dx}{dy} = \frac{1}{y}\left( x + 3 y^2 \right) \]
\[ \Rightarrow \frac{dx}{dy} - \frac{1}{y}x = 3y . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dx}{dy} + Px = Q\]
\[\text{where }P = - \frac{1}{y}\text{ and }Q = 3y\]
\[ \therefore I . F . = e^{\int P\ dy} \]
\[ = e^{- \int\frac{1}{y}dy} \]
\[ = e^{- \log \left| y \right|} = \frac{1}{y}\]
Multiplying both sides of (1) by I . F . = `1/y`, we get
\[\frac{1}{y}\left( \frac{dx}{dy} - \frac{1}{y}x \right) = \frac{1}{y} \times 3y\]
\[ \Rightarrow \frac{1}{y}\left( \frac{dx}{dy} - \frac{1}{y}x \right) = 3\]
Integrating both sides with respect to y, we get
\[x\frac{1}{y} = \int 3dy + C\]
\[ \Rightarrow x\frac{1}{y} = 3y + C\]
\[ \Rightarrow x = 3 y^2 + Cy\]
\[\text{Hence, }x = 3 y^2 + Cy\text{ is the required solution.}\]
APPEARS IN
RELATED QUESTIONS
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
The differential equation of `y=c/x+c^2` is :
(a)`x^4(dy/dx)^2-xdy/dx=y`
(b)`(d^2y)/dx^2+xdy/dx+y=0`
(c)`x^3(dy/dx)^2+xdy/dx=y`
(d)`(d^2y)/dx^2+dy/dx-y=0`
Find the differential equation representing the curve y = cx + c2.
Find the general solution of the following differential equation :
`(1+y^2)+(x-e^(tan^(-1)y))dy/dx= 0`
Solve the differential equation `dy/dx -y =e^x`
Show that the general solution of the differential equation `dy/dx + (y^2 + y +1)/(x^2 + x + 1) = 0` is given by (x + y + 1) = A (1 - x - y - 2xy), where A is parameter.
Write the order of the differential equation associated with the primitive y = C1 + C2 ex + C3 e−2x + C4, where C1, C2, C3, C4 are arbitrary constants.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The solution of the differential equation \[x\frac{dy}{dx} = y + x \tan\frac{y}{x}\], is
If m and n are the order and degree of the differential equation \[\left( y_2 \right)^5 + \frac{4 \left( y_2 \right)^3}{y_3} + y_3 = x^2 - 1\], then
The solution of the differential equation (x2 + 1) \[\frac{dy}{dx}\] + (y2 + 1) = 0, is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{y dx - x dy}{y} = 0\], is
Find the particular solution of the differential equation `(1+y^2)+(x-e^(tan-1 )y)dy/dx=` given that y = 0 when x = 1.
`y sec^2 x + (y + 7) tan x(dy)/(dx)=0`
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
Solve the differential equation:
(1 + y2) dx = (tan−1 y − x) dy
Find the particular solution of the differential equation \[\frac{dy}{dx} = - 4x y^2\] given that y = 1, when x = 0.
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
(1 + x2) dy + 2xy dx = cot x dx
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Solve the differential equation (1 + y2) tan–1xdx + 2y(1 + x2)dy = 0.
Solution of differential equation xdy – ydx = 0 represents : ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Which of the following is the general solution of `("d"^2y)/("d"x^2) - 2 ("d"y)/("d"x) + y` = 0?
The solution of the differential equation `("d"y)/("d"x) = "e"^(x - y) + x^2 "e"^-y` is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of `("d"y)/("d"x) = (y/x)^(1/3)` is `y^(2/3) - x^(2/3)` = c.
Which of the following differential equations has `y = x` as one of its particular solution?
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.