English

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation: y = ex + 1 : y″ – y′ = 0 - Mathematics

Advertisements
Advertisements

Question

Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = ex + 1  :  y″ – y′ = 0

Sum

Solution

We have y = ex + 1                  ...(1)

Differentiating (1) w.r.t.x, we get

`y' = d/dx (e^x + 1) = e^x`

and `y” = d/dx (e^x) = e^x`

⇒ y” - y’ = 0

Thus, y = ex + 1 is a solution to the stated differentiating (1) equation.

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Differential Equations - Exercise 9.2 [Page 385]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 9 Differential Equations
Exercise 9.2 | Q 1 | Page 385

RELATED QUESTIONS

Solve the differential equation:  `x+ydy/dx=sec(x^2+y^2)` Also find the particular solution if x = y = 0.


Find the particular solution of differential equation:

`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`


Solve the differential equation `dy/dx -y =e^x`


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

y = x2 + 2x + C  :  y′ – 2x – 2 = 0


Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:

`y = sqrt(a^2 - x^2 )  x in (-a,a) : x + y  dy/dx = 0(y != 0)`


The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.


Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`


If y = etan x+ (log x)tan x then find dy/dx


Solve the differential equation `cos^2 x dy/dx` + y = tan x


Find the particular solution of the differential equation

`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`


Solve the differential equation:

`e^(x/y)(1-x/y) + (1 + e^(x/y)) dx/dy = 0` when x = 0, y = 1


The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is


Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is


The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is


The number of arbitrary constants in the particular solution of a differential equation of third order is


Write the solution of the differential equation \[\frac{dy}{dx} = 2^{- y}\] .


\[\frac{dy}{dx} = \left( x + y \right)^2\]


\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]


\[y - x\frac{dy}{dx} = b\left( 1 + x^2 \frac{dy}{dx} \right)\]


`x cos x(dy)/(dx)+y(x sin x + cos x)=1`


`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`


For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]


For the following differential equation, find a particular solution satisfying the given condition:

\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]


Solve the following differential equation:-

y dx + (x − y2) dy = 0


Find a particular solution of the following differential equation:- (x + y) dy + (x − y) dx = 0; y = 1 when x = 1


Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`


The general solution of the differential equation `"dy"/"dx" = "e"^(x - y)` is ______.


The general solution of the differential equation `"dy"/"dx" + y/x` = 1 is ______.


The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.


y = x is a particular solution of the differential equation `("d"^2y)/("d"x^2) - x^2 "dy"/"dx" + xy` = x.


Find the general solution of y2dx + (x2 – xy + y2) dy = 0.


Solution of the differential equation tany sec2xdx + tanx sec2ydy = 0 is ______.


The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.


The solution of `x ("d"y)/("d"x) + y` = ex is ______.


Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.


The general solution of the differential equation (ex + 1) ydy = (y + 1) exdx is ______.


Number of arbitrary constants in the particular solution of a differential equation of order two is two.


The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×