Advertisements
Advertisements
प्रश्न
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
पर्याय
y = ex(x – 1)
y = xe–x
y = xe–x + 1
y = (x + 1)e–x
उत्तर
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is y = xe–x .
Explanation:
The given differential equation is `("d"y)/("d"x) + y = "e"^-x`
Since, it is a linear differential equation
∴ P = 1 and Q = e–x
∴ I.F = `"e"^(int 1."d"x)` = ex
So, the solution is `y xx "I"."F". = int "Q". "I"."F". "d"x + "c"`
⇒ `y . "e"^x = int"e"^-x . "e"^x "d"x + "c"`
⇒ `y . "e"^x = int 1."d"x + "c"`
⇒ `y . "e"^x + "c"`
Put x = 0, y = 0
We have 0 = 0 + c
∴ c = 0
So, the solution is `y "e"^x` = x
⇒ y = `x . "e"^-x`
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
(x2 + 1) dy + (2y − 1) dx = 0
\[\left( 1 + y^2 \right) + \left( x - e^{- \tan^{- 1} y} \right)\frac{dy}{dx} = 0\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \frac{1 - \cos x}{1 + \cos x}\]
Solve the following differential equation:- `y dx + x log (y)/(x)dy-2x dy=0`
Solve the following differential equation:-
\[\frac{dy}{dx} + 2y = \sin x\]
Solution of the differential equation `"dx"/x + "dy"/y` = 0 is ______.
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
The number of arbitrary constants in the general solution of a differential equation of order three is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
The solution of differential equation coty dx = xdy is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Which of the following differential equations has `y = x` as one of its particular solution?
Find the general solution of the differential equation `x (dy)/(dx) = y(logy - logx + 1)`.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
The curve passing through (0, 1) and satisfying `sin(dy/dx) = 1/2` is ______.
Solve the differential equation:
`(xdy - ydx) ysin(y/x) = (ydx + xdy) xcos(y/x)`.
Find the particular solution satisfying the condition that y = π when x = 1.