Advertisements
Advertisements
प्रश्न
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is ______.
पर्याय
x(y + cosx) = sinx + c
x(y – cosx) = sinx + c
xy cosx = sinx + c
x(y + cosx) = cosx + c
उत्तर
Solution of the differential equation `("d"y)/("d"x) + y/x` = sec x is x(y + cosx) = sinx + c.
Explanation:
The given differential equation is `("d"y)/("d"x) + y/x` = sec x
Since, it is a linear differential equation
∴ P = `1/x` and Q = sin x
Integrating factor I.F. = `"e"^(int 1/x "d"x)`
= `"e"^(log x)`
= x
∴ Solution is `y xx "I"."F" = int "Q" xx "I"."F". "d"x + "c"`
`y xx x = int sinx . x "d"x + "c"`
⇒ `y xx x = int x sin x "d"x + "c"`
⇒ `yx = x . int sinx "d"x - int("D"(x)intsinx "d"x)"d"x + "c"`
⇒ `yx = x(- cos x) - int - cos x "d"x`
⇒ `yx = - x cosx + int cosx "d"x`
⇒ `yx = -x cosx + sinx + "c"`
⇒ `yx + cosx = sinx + "c"`
⇒ `x(y + cosx) = sinx + "c"`
APPEARS IN
संबंधित प्रश्न
Solve the differential equation cos(x +y) dy = dx hence find the particular solution for x = 0 and y = 0.
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
Find the particular solution of the differential equation
`tan x * (dy)/(dx) = 2x tan x + x^2 - y`; `(tan x != 0)` given that y = 0 when `x = pi/2`
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
The number of arbitrary constants in the general solution of differential equation of fourth order is
The number of arbitrary constants in the particular solution of a differential equation of third order is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} - y \tan x = e^x \sec x\]
`(2ax+x^2)(dy)/(dx)=a^2+2ax`
\[\frac{dy}{dx} + 5y = \cos 4x\]
For the following differential equation, find the general solution:- `y log y dx − x dy = 0`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \sin^{- 1} x\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Find the equation of a curve passing through the point (0, 1). If the slope of the tangent to the curve at any point (x, y) is equal to the sum of the x-coordinate and the product of the x-coordinate and y-coordinate of that point.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of `"dy"/"dx" + "a"y` = emx
Solve: `2(y + 3) - xy "dy"/"dx"` = 0, given that y(1) = – 2.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
Integrating factor of `(x"d"y)/("d"x) - y = x^4 - 3x` is ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
General solution of the differential equation of the type `("d"x)/("d"x) + "P"_1x = "Q"_1` is given by ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Find a particular solution, satisfying the condition `(dy)/(dx) = y tan x ; y = 1` when `x = 0`