Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
उत्तर
Let I = `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
= `int sqrt((e^(2x)(e^x - 1))/(e^x + 1)).dx`
= `int e^xsqrt((e^x - 1)/(e^x + 1)).dx`
Put ex = t
∴ ex dx = dt
∴ I = `int sqrt((t - 1)/(t + 1))dt`
= `int sqrt((t - 1)/(t + 1) xx (t - 1)/(t - 1))dt`
= `int sqrt(((t - 1)^2)/(t^2 - 1)dt`
= `int (t - 1)/sqrt(t^2 - 1)dt`
= `(1)/(2) int (2t)/sqrt(t^2 - 1)dt - int (1)/sqrt(t^2 - 1)dt`
= I1 – I2
In I1, put t2 – 1 = θ
∴ 2t dt = dθ
∴ I1 = `(1)/(2)int (dθ)/sqrt(θ)`
= `(1)/(2) int θ^(-1/2) dθ`
= `(1)/(2) (θ^(1/2))/((1/2)) + c_1`
= `sqrt(θ) + c_1`
= `sqrt(t^2 - 1) + c_1`
= `sqrt(e^(2x) - 1) + c_1`
and I2 = `int (1)/sqrt(t^2 - 1)dt`
= `log|t + sqrt(t^2 - 1)| + c_2`
= `log|e^x + sqrt(e^(2x) - 1)| + c_2`
∴ I = `sqrt(e^(2x) - 1) - log|e^x + sqrt(e^(2x) - 1) + c`, where c = c1 + c2.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`e^(2x+3)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate : `∫1/(3+2sinx+cosx)dx`
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of\[\int \log_e x\ dx\].
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int sqrt(1 + sin2x) "d"x`
`int (sin4x)/(cos 2x) "d"x`
State whether the following statement is True or False:
If `int x "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int dx/(1 + e^-x)` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate:
`intsqrt(3 + 4x - 4x^2) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`