मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following integrals : ∫e3x-e2xex+1.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`

बेरीज

उत्तर

Let I = `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`

= `int sqrt((e^(2x)(e^x - 1))/(e^x + 1)).dx`

= `int e^xsqrt((e^x - 1)/(e^x + 1)).dx`

Put ex = t

∴ ex dx = dt

∴ I = `int sqrt((t - 1)/(t + 1))dt`

= `int sqrt((t - 1)/(t + 1) xx (t - 1)/(t - 1))dt`

= `int sqrt(((t - 1)^2)/(t^2 - 1)dt`

= `int (t - 1)/sqrt(t^2 - 1)dt`

= `(1)/(2) int (2t)/sqrt(t^2 - 1)dt - int (1)/sqrt(t^2 - 1)dt`

= I1 – I 

In I1, put t2 – 1 = θ

∴ 2t dt = dθ

∴ I1 = `(1)/(2)int (dθ)/sqrt(θ)`

= `(1)/(2) int θ^(-1/2) dθ`

= `(1)/(2) (θ^(1/2))/((1/2)) + c_1`

= `sqrt(θ) + c_1`

= `sqrt(t^2 - 1) + c_1`

= `sqrt(e^(2x) - 1) + c_1`

and I2 = `int (1)/sqrt(t^2 - 1)dt`

= `log|t + sqrt(t^2 - 1)| + c_2`

= `log|e^x + sqrt(e^(2x) - 1)| + c_2`

∴ I = `sqrt(e^(2x) - 1) - log|e^x + sqrt(e^(2x) - 1) + c`, where c = c1 + c2.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (C) [पृष्ठ १२८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (C) | Q 1.9 | पृष्ठ १२८

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`e^(2x+3)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


Solve: dy/dx = cos(x + y)


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : tan5x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int sqrt(1 + sin2x)  "d"x`


`int (sin4x)/(cos 2x) "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int dx/(1 + e^-x)` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×