हिंदी

Integrate the following w.r.t.x : log (log x)+(log x)–2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t.x : log (log x)+(log x)–2 

योग

उत्तर

Let I = `int [log (logx) + (logx)^-2]*dx`

= `int [log(logx) + 1/(log x)^2]*dx`
Put log x = t
∴ x = et
∴ x = et·dt

∴ I = `int (log t + 1/t^2)e^t*dt`

= `int e^t (log t + 1/t - 1/t + 1/t^2)*dt`

= `int [e^t (log t 1/t) + e^t (-1/t + 1/t^2)]*dt`

= `inte^t (log t + 1/t)*dt - int e^t (1/t - 1/t^2)*dt`

= I1 – I2 

In I1, Put f(t) = log t. Then f'(t) = `(1/t)`

∴ I1 = `int e^t [f(t) + f'(t)]*dt`

= `e^t f(t)`

= `e^t log t`

In I2, Put g(t) = `(1/t)`. Then g'(t) = `-(1/t^2)`

∴ I2 = `int e^t ["g"(t) + "g"'(t)]*dt`

= `e^t "g" (t)`

= `e^t*(1/t)`

∴ I = `e^t log t - e^t/t + c`

= `xlog (logx) - x/logx + c`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.08 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Integrate the function in x sec2 x.


Integrate the function in tan-1 x.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: ∫ (log x)2 dx


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int 1/x  "d"x` = ______ + c


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find: `int e^x.sin2xdx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


`intsqrt(1+x)  dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


`int1/(x+sqrt(x))  dx` = ______


`inte^(xloga).e^x dx` is ______


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate `int tan^-1x  dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate:

`int x^2 cos x  dx`


The value of `inta^x.e^x dx` equals


Evaluate `int(1 + x + x^2/(2!))dx`.


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×