Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`
उत्तर
Let I = `int (1)/(2cosx + 3sinx)*dx`
= `int (1)/(3sinx + 2cosx)*dx`
Dividing numerator and denominator by
`sqrt(3^2 + 2^2) = sqrt(13)`, we get
I = `int ((1/sqrt(3)))/(3/sqrt(13) sinx + 2/sqrt(13) cosx)*dx`
Since, `(3/sqrt(13))^2 + (2/sqrt(13))^2 = (9)/(13) + (4)/(13)` = 1,
we take `(3)/sqrt(13) =cos oo, (2)/sqrt(13) = sin oo`
so that `oo = (2)/(3) and oo = tan^-1(2/3)`
∴ I = `(1)/sqrt(13) int (1)/(sin x + cosoo + cosx sin oo)*dx`
= `(1)/sqrt(13) int (1)/(sin(x + oo))*dx`
= `(1)/sqrt(13) int cosec (x + oo)*dx`
= `(1)/sqrt(13)log|tan|tan((x + oo)/2)| + c`
= `(1)/sqrt(13)log |tan ((x + tan^-1 2/3)/(2))| + c`.
Alternative Method
Let I = `int (1)/(2cosx + 3sinx)*dx`
Put `tan(x/2)` = t
∴ `x/(2) = tan^-1 t`
∴ x = 2tan–1 t
∴ dx = `(2)/(1 + t^2)*dt`
and
sin x = `(2t)/(1 + t^2)`
and
cos x = `(1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(2((1 - t^2)/(1 + t^2)) + 3((2t)/(1 + t^2)))*(2dt)/(1 + t^2)`
= `int (1 + t^2)/(2 - 2t^2 + 6t)*(2dt)/(1 + t^2)`
= `int (1)/(1 - t^2 + 3t)*dt`
= `int (1)/(1 - (t^2 - 3t + 9/4) + 9/4)*dt`
= `int (1)/((sqrt(13)/2)^2 - (t - 3/2)^2)*dt`
= `(1)/(2 xx sqrt(13)/(2))log |(sqrt(13)/(2) + t - 3/2)/(sqrt(13)/(2) - t + 3/2)| + c`
= `(1)/sqrt(13)log|(sqrt(13) + 2t - 3)/(sqrt(13) - 2t + 3)| + c`
= `(1)/sqrt(13)log|(sqrt(13) + 2tan(x/2) - 3)/(sqrt(13) - 2tan(x/2) - 3)| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int x^2/((x^2+2)(2x^2+1))dx`
Find: `I=intdx/(sinx+sin2x)`
Evaluate: `∫8/((x+2)(x^2+4))dx`
Integrate the rational function:
`(3x - 1)/((x - 1)(x - 2)(x - 3))`
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(2x - 3)/((x^2 -1)(2x + 3))`
Integrate the rational function:
`(x^3 + x + 1)/(x^2 -1)`
Integrate the rational function:
`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]
Find `int (2cos x)/((1-sinx)(1+sin^2 x)) dx`
Integrate the following w.r.t. x : `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))`
Integrate the following w.r.t. x : `(12x + 3)/(6x^2 + 13x - 63)`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following w.r.t. x : `(1)/(2sinx + sin2x)`
Integrate the following w.r.t. x : `(1)/(sin2x + cosx)`
Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x : `sec^2x sqrt(7 + 2 tan x - tan^2 x)`
Integrate the following w.r.t.x : `(x + 5)/(x^3 + 3x^2 - x - 3)`
Evaluate: `int 1/("x"("x"^5 + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
Evaluate: `int (2"x"^3 - 3"x"^2 - 9"x" + 1)/("2x"^2 - "x" - 10)` dx
Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx
`int x^2sqrt("a"^2 - x^6) "d"x`
If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)
`int sin(logx) "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x sin2x cos5x "d"x`
`int (x + sinx)/(1 - cosx) "d"x`
`int ("d"x)/(x^3 - 1)`
`int 1/x^3 [log x^x]^2 "d"x` = p(log x)3 + c Then p = ______
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
Evaluate `int x^2"e"^(4x) "d"x`
`int x/((x - 1)^2 (x + 2)) "d"x`
`int 1/(4x^2 - 20x + 17) "d"x`
`int (3"e"^(2"t") + 5)/(4"e"^(2"t") - 5) "dt"`
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
The numerator of a fraction is 4 less than its denominator. If the numerator is decreased by 2 and the denominator is increased by 1, the denominator becomes eight times the numerator. Find the fraction.
Evaluate: `int (dx)/(2 + cos x - sin x)`
Evaluate: `int_-2^1 sqrt(5 - 4x - x^2)dx`
Find: `int x^4/((x - 1)(x^2 + 1))dx`.
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int x/((x + 2)(x - 1)^2)dx`
Evaluate:
`int (x + 7)/(x^2 + 4x + 7)dx`