Advertisements
Advertisements
Question
`int dx/sqrt(9x - 4x^2)` equals:
Options
`1/9 sin^-1 ((9x - 8)/8) + C`
`1/2 sin^-1 ((8x - 9)/9) + C`
`1/3 sin^-1 ((9x - 8)/8) + C`
`1/2 sin^-1 ((9x - 8)/9) + C`
Solution
`1/2 sin^-1 ((8x - 9)/9) + C`
Explanaton:
Let `I = int dx/sqrt(9x^2 - 4x^2)`
`= 1/2 int dx/sqrt(9/4 x - x^2)`
`= 1/2 int dx/(sqrt(- (x^2 - 9/4 x)))`
`= 1/2 dx/sqrt(- (x^2 - 9/4 + 81/64) + 81/64)`
`= 1/2 int dx/sqrt(81/64 - (x - 9/8)^2) ... [because int 1/(a^2 - x^2) dx = sin^-1 x/a]`
`= 1/2 sin^-1 ((x - 9/8)/(9/8)) +C`
`= 1/2 sin^-1 ((8x - 9)/9) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate : ` int x^2/((x^2+4)(x^2+9))dx`
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x+2)/sqrt(x^2 + 2x + 3)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
Find: `int (dx)/(x^2 - 6x + 13)`
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.