Advertisements
Advertisements
Question
Integrate the function `(x + 2)/sqrt(x^2 -1)`
Solution
Let `I = (x + 2)/sqrt(x^2 - 1) dx`
`= int x/sqrt(x^2 - 1) dx + int 2/sqrt(x^2 - 1) dx`
`= I_1 + I_2 + C` (Say) ....(i)
Now `I_1 = int x/sqrt(x^2 - 1) dx`
Put x2 - 1 = t
2x dx = dt
`= 1/2 int dt/sqrtt = 1/2 int t^(-1/2) dt`
`= 1/2 xx t^(1/2)/(1/2) + C_1`
`= sqrtt + C_1 = sqrt (x^2 - 1) + C_1` ....(ii)
and `I_2 = int 2/sqrt(x^2 - 1) dx`
`= 2 log abs (x + sqrt(x^2 - 1) + C_2` .....(iii)
From (i), (ii) and (iii), we get,
`therefore I = sqrt(x^2 - 1) + 2 log abs (x + sqrt(x^2 - 1)) + C`
APPEARS IN
RELATED QUESTIONS
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x - a)(x - b))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(1+ 3x - x^2)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
Find `int (dx)/sqrt(4x - x^2)`
Find: `int (dx)/(x^2 - 6x + 13)`