Advertisements
Advertisements
Question
Solution
\[\text{ We have,} \]
\[I = \int \frac{dx}{\left( x^2 - 1 \right) \sqrt{x^2 + 1}}\]
\[\text{ Putting x }= \frac{1}{t}\]
\[ \Rightarrow dx = - \frac{1}{t^2}dt\]
\[ \therefore I = \int \frac{- \frac{1}{t^2}dt}{\left( \frac{1}{t^2} - 1 \right) \sqrt{\frac{1}{t^2} + 1}}\]
\[ = \int \frac{- \frac{1}{t^2} dt}{\frac{\left( 1 - t^2 \right)}{t^2} \times \frac{\sqrt{1 + t^2}}{t}}\]
\[ = \int \frac{- t \text{ dt }}{\left( 1 - t^2 \right) \sqrt{1 + t^2}}\]
\[\text{ Putting 1 }+ t^2 = u^2 \]
\[ \Rightarrow t^2 = u^2 - 1\]
\[ \Rightarrow 2t\text{ dt }= 2u \text{ du }\]
\[ \Rightarrow t \text{ dt } = u \text{ du }\]
\[I = - \int\frac{u \text{ du}}{\left( 1 - u^2 + 1 \right)u}\]
\[ = - \int \frac{du}{2 - u^2}\]
\[ = - \int \frac{du}{\left( \sqrt{2} \right)^2 - u^2}\]
\[ = - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{u + \sqrt{2}}{u - \sqrt{2}} \right| + C\]
\[ = - \frac{1}{2\sqrt{2}}\text{ log }\left| \frac{\sqrt{1 + t^2} + \sqrt{2}}{\sqrt{1 + t^2} - \sqrt{2}} \right| + C\]
\[ = - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{\sqrt{1 + \frac{1}{x^2}} + \sqrt{2}}{\sqrt{1 + \frac{1}{x^2}} - \sqrt{2}} \right| + C\]
\[ = - \frac{1}{2\sqrt{2}}\text{ log} \left| \frac{\sqrt{x^2 + 1} + \sqrt{2}x}{\sqrt{x^2 + 1} - \sqrt{2}x} \right| + C\]
APPEARS IN
RELATED QUESTIONS
find : `int(3x+1)sqrt(4-3x-2x^2)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `(x - 1)/sqrt(x^2 - 1)`
Integrate the function `x^2/sqrt(x^6 + a^6)`
Integrate the function `(sec^2 x)/sqrt(tan^2 x + 4)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(x + 2)/sqrt(4x - x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/(x^2 + 2x + 2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(x^2 + 3x)`
Integrate the function:
`sqrt(1+ x^2/9)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`