Advertisements
Advertisements
Question
`int sqrt(1+ x^2) dx` is equal to ______.
Options
`x/2 sqrt(1 + x^2) + 1/2 log abs ((x + sqrt(1 + x^2))) + C`
`2/3 (1 + x^2)^(3/2) + C`
`2/3 x(1 + x^2)^(3/2) + C`
`x^2/2 sqrt(1 + x^2) + 1/2 x^2 log abs (x + sqrt(1 + x^2)) + C`
Solution
`int sqrt(1+ x^2) dx` is equal to `underline (x/2 sqrt(1 + x^2) + 1/2 log abs ((x + sqrt(1 + x^2))) + C).`
Explanation:
`int sqrt(a^2 + x^2) dx`
`= x/2 sqrt (a^2 + x^2) + a^2/2 log abs (x + sqrt(a^2 + x^2)) + C`
Here, `a^2 = 1`
`therefore int sqrt(1 + x^2) dx = x/2 sqrt(1 + x^2) + 1/2 log abs ((x + sqrt(1 + x^2))) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Find:
`int(x^3-1)/(x^3+x)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt(1+4x^2)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `(3x)/(1+ 2x^4)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `1/sqrt(x^2 +2x + 2)`
Integrate the function `1/(9x^2 + 6x + 5)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(6x + 7)/sqrt((x - 5)(x - 4))`
Integrate the function `(5x + 3)/sqrt(x^2 + 4x + 10)`
`int dx/(x^2 + 2x + 2)` equals:
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(4 - x^2)`
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
`int sqrt(x^2 - 8x + 7) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Evaluate : `int_2^3 3^x dx`
\[\int\frac{8x + 13}{\sqrt{4x + 7}} \text{ dx }\]
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is