Advertisements
Advertisements
Question
Integrate the function `1/sqrt(8+3x - x^2)`
Solution
Let `I = int 1/sqrt(8 + 3x - x^2) dx`
`= int dx/sqrt(8 - (x^2 - 3x))`
`= int dx/sqrt(8 - (x^2 - 2 * 3/2 x + 9/4) + 9/4)`
`= int dx/sqrt(41/4 - (x - 3/2)^2)`
`= int dx/sqrt((sqrt41/2)^2 - (x - 3/2)^2)` `...[∵ int dx/sqrt (a^2 - x^2) = sin^-1 x/a + C]`
`= sin^-1 ((x - 3/2)/(sqrt41/2)) + C`
`= sin^-1 ((2x - 3)/sqrt41) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate: `int(5x-2)/(1+2x+3x^2)dx`
Evaluate:
`int((x+3)e^x)/((x+5)^3)dx`
Integrate the function `(3x^2)/(x^6 + 1)`
Integrate the function `1/sqrt((2-x)^2 + 1)`
Integrate the function `1/sqrt(9 - 25x^2)`
Integrate the function `x^2/(1 - x^6)`
Integrate the function `1/sqrt(7 - 6x - x^2)`
Integrate the function `1/sqrt((x -1)(x - 2))`
Integrate the function `(4x+ 1)/sqrt(2x^2 + x - 3)`
Integrate the function `(5x - 2)/(1 + 2x + 3x^2)`
Integrate the function `(x + 3)/(x^2 - 2x - 5)`
`int dx/sqrt(9x - 4x^2)` equals:
Integrate the function:
`sqrt(1- 4x^2)`
Integrate the function:
`sqrt(x^2 + 4x + 6)`
Integrate the function:
`sqrt(x^2 + 4x +1)`
Integrate the function:
`sqrt(1-4x - x^2)`
Integrate the function:
`sqrt(x^2 + 4x - 5)`
Integrate the function:
`sqrt(x^2 + 3x)`
`int sqrt(1+ x^2) dx` is equal to ______.
Find `int dx/(5 - 8x - x^2)`
Find `int (2x)/(x^2 + 1)(x^2 + 2)^2 dx`
Integration of \[\frac{1}{1 + \left( \log_e x \right)^2}\] with respect to loge x is
\[\int\frac{1 + x + x^2}{x^2 \left( 1 + x \right)} \text{ dx}\]
Find : \[\int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\] .
Find:
`int_(-pi/4)^0 (1+tan"x")/(1-tan"x") "dx"`
If θ f(x) = `int_0^x t sin t dt` then `f^1(x)` is
`int (a^x - b^x)^2/(a^xb^x)dx` equals ______.